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The temperature distribution around a radiating sphere in a homogeneous gas medium 
is considered with allowance for molecular heat transfer. Local thermodynamic equilib- 
rium is assumed. The temperature is determined from an equation derived under the 

assumption that the photon path length i / a is much larger than the radius a of the 
sphere. The general solution of the linearized energy transfer equation is written out. 
The behavior of the Green function for small and lar e times is investigated, 

The temperature distribution ln the range ar < 
vx $ aa (where x, 

$_ s/x, is investigated in the particu- 
lar case x 4 xr, x,. are the coefficients of molecular and radi- 
ant thermal conductivity). The characteristic temperature relaxation time is determined. 

1, The ba,lc equrtionr. Energy propagation from a radiating sphere produces 
nonuniform heating of the gas medium and radial gas motion. With a sufficiently small 

temperature drop between the surface of the sphere(at the temperature T,) and points far 
away from it (at the temperature Too) the velocities u of gas motion are negligibly small 
as compared with the velocity of sound, so that the pressure has a chance to smooth itself 
out and heating of the gas proceeds at constant pressure. 

The equation of energy transfer in a gas is [l] 

pc, 
C 
g + vVT 

! 
+ div (S, - x’i;lT) = 9 (1.0 

Here I, is the density of the gas medium ; cp is the specific heat at constant pressure; 

f . is the time ; s, is the radiation flux density ; 1c is the molecular thermal conductivity 

coefficient. 
We have omitted the energy flux associated with internal friction processes from Eq. 

(1.1). This flux is quadratic in velocity and therefore of a higher order of smallness over 

the temperature drop. 
We must now apply the continuity equations p] for the gas density p and the radiation 

energy density u , namely 

-$+divpr=O, divS,=C(c(U-- U,) (%a = f r> (i-2) 

Here c is the velocity of light,, U, is the energy density of the eq~librium radiation, 

and u is the Stefan-Boltzmann constant. 
A gas medium is described by the equation of state of an ideal gas which together 

with the condition of constant pressure during heating of the gas implies that pT = 
= poo Too (where PO0 is the gas density far away from the drop). 

Let us assume that the radiation path length 1 / a is much larger than the radius a 
of the sphere. Overlooking the dependence of a on temperature and density (as in [3]). 
we obtain the following equation describing the temperature distribution around the 
sphere : co T+r’ 

i?T 
PCP at-/-WP --‘xVT- 

> 
4aaT~ + 2 7 

s 
r’F (r’) 

s 
e4:” 

du 
--+‘$- 

la IT---r’i (2.3) 
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01 

+ 2am [T,L - a S Ta (r) e-ar dr] [i - (I - -$)“*I e-r - 0 

Here e is the effective em&vity in the sphere immersed in the gas, and r is the dis- 
tance from the center of the sphere. 

&t us introduce the new function cp , 

T4 = Tm4 (1 + cph Tar = Tao4 U+ ‘pa) (1.4) 

Setting 1 ‘p[ < l,,we can linearize Eq. (1.3). 
00 r+r 

P2-g 

Here 

P2 16aaT 3 
T,$ 

A=;b-a ,,fT~~ z<: 

have the term Eq. since is quantity the 
of / in with linearized equation (1.2). means turn 

TV V cp is a small quantity of the order of q2. 

2. The general form of the rolution,of the llnsarised equation. 
If we complement the definition of cp (r) for I < 0 in even fashion, i. e. by stipulating that 
‘P (- r) = cp (r), then, neglecting quantities of the order au and ua In au, we can replace’ 
(1.5) by the equation [3] m __ 

a%p aw a -- IL’-- az -rq-y s r"p (r’, T) ,131 (a I r - r’ I) dr’ - (2.1) 

under the arbitrary initial and boundary conditions 
x 

‘p (r, T) --, cp, (z) for r -+ a + 0, z # 0 (2.2) 

cp (r, 4 -+ 0 for r -+ 00 
cp (r, z) + ‘p. (r) for -c -, 0, r # a 

It is also convenient to assume that the boundary condition for r =+ 0 has been given. 

Let ‘*p (r, T)+ uB (7) for r + + 0, z > 0. If the characteristic time of variation of 
the boundary value of the temperature (Pi (r) is large as compared with aa / X. ,, i.e. with 

the time of establishment of the temperature in the boundary layer due to molecular 
heat conduction, then (as is done in [3] in considering a steadystate temperature distri- 
bution) we can assume that B (r) = ‘pa (f) for @ a. We shall confine ourselves to this 
case. 

Let us solve Eq. (2.1) with the aid of the Fourier and Laplace transformations 
co 

0 (k, p) = [ emPsdt 1 

az 

r”p (r, t) emikr dr , %(k, p)=+ 
s 

rep,(r) emikrdr (2.3) 

0 -m 

A* (P) = r 

--co 

ewp’A (z) dr, B* (p) = 7 eAP’(pa (z) dz 

The transform of Eq. (2.1) is of the form ’ 
0 

- p2k2@ - 2p2ikaB* - p (0 - (Ro) z Q - A*F - % arc tg $ (2.4) 

F= - iaa am !g (k /a) 
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This implies that 
P (Q)o - @,) 

~--w=1+p+IL2k2-(a/k)arctg(k/a) 
(2.5) 

A*F - 2@kaB* 
@m=1 +pk2-(u/k)arctg(k/a) 

If (Pi is independent of z, then r&, is the transform of the steadystate temperature dis- 
tribution obtained in [3]. In the general case @, (k, p) corresponds to 

co 

s (AF - 2p?kacp,) eik’dk 
1+ kZk2 - (a/ k)arctg(k/a) 

--co 
(2.6) 

Making use of the familiar convolution theorems for Fourier and Laplace transforms, 
we readily obtain the following expressions from (2.5) : 

p&J-%J= 5 r’ [cpo (t’) G (r - r’, z) - -& d iG(r- r’, T - T’) 9, (r’, t’) dt’] dr’ (2.7) 
-cc 0 

G(r, T)=Z ’ 5 exp[ikr-((1+p2ka-garctg$)r]dk 
-m 

3. The Green function. For large times z > 1 the major contribution to the 
integral which defines the Green function G (r, rj is associated with small k , 

1 co 
G(r, r)=p s 

exp (ikr - ye2k%) dk = 
-cc 

= 2p, Vi-CT I - =P(-&) (I-L*l=P~+&) (3.1) 

This result agrees with that of 143, whose author considers a similar problem for the 
plane-parallel case with the radiation transfer equation in the Schwarzschild approxima- 

tion, i. e. with the introduction of unilateral fluxes. 
Green function (3.1) is the Green function of the ordinary heat conduction equation 

with the coefficient of thermal diffusivity equal to the sum of coefficients of molecular 

and radiant thermal diffusivity. 
For small times re i we can expand exp { - z [1 - (a / k) arctg (k / a)]} in a series, 

retaining only the term of the first order of smallness. The Green function now becomes 

exp (ikr - p‘Jk”c) 1 -t + q arc tg $ (3.2) 

exp (tkr - p?k%) % arc tg 4 dk 

--a 

For a small z (cmin (1, i / p*a*) we assume that exp (--p2k2+=1, since the major 
contribution to the integral is associated with the values k - a. 

Hence, we can write - l--t 
G(r, T)=--- 

2p If z exp 
BI (a I r I) (3.3) 

This result differs from that obtained earlier for the plane-parallel case [4] in the fact 
that the exponential has been replaced by an integral exponential. 

It is still true, however, that the effect of molecular heat conduction is substantial in 
the range of r values of the order of pv 2 
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If Cl%% 1, then 74 1 I p a a g , and the region under consideration corresponds to 

r -@ 1 / a. In the case pau2< 1 formula (3.3) is valid for z < 1 so that the domain 
where the-effect of molecular heat conduction is substantial is restricted by the condition 

r<PVr. 

4. A particular rolutfon. Let ‘p. (t) ES 0, %(z) = (pa v (z). Then,by (2.7) 
and (2.6), 

‘(‘p,- ~)=~r’~~fr’)Id(r-r’,r)-G((r+r’,~)]dr’ (4.0 
0 

As is shown in [3], the steadystate temperature distribution in the region r 6 p for 

paas <t, p > a is of the form t’P 03 (r) = a~0 exp (- r i P) (44.2) 

Thus, for small times T 4 I in the region r 4( p we have 

co 

s 
exp (- t”) dt 

For large times 7 ,> i,in the same region”we have 

(4.4) 

Formulas (4.3) and (4.4) imply that the characteristic temperature relaxation time, 
and therefore the relaxation time of the heat.fluxdue to molecular heat conduction is 

+lxfor t<p?/x(~<i) ,and~4a2/x-~~fxrfort~~2!x(wherex,=x~,lx 
is the radiant thermal conductivity and ^i., is the coefficient of radiant thermal conduc- 

tivity. The condition xr s x means that temperature relaxation in the region r g p 
occurs in times of the order of p2 / x. This means that radiation does not affect temper- 

ature relaxation in the range or 6 6~ / 5~~. 
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